Realizzabilità su \mathbb{Q} del gruppo simmetrico Ilaria Del Corso

Teorema 1 (Teorema di irriducibilità di Hilbert) $Sia r \ge 1$ e $Sia f(T_1, ..., T_n, X_1, ..., X_r) \in \mathbb{Q}[T_1, ..., T_n, X_1, ..., X_r]$ un polinomio in n + r indeterminate, irriducibile. Allora esistono infinite n-uple $(a_1, ..., a_n) \in \mathbb{Q}^n$ tali che $f(a_1, ..., a_n, X_1, ..., X_r)$ è un polinomio irriducibile di $\mathbb{Q}[X_1, ..., X_r]$.

Ricordiamo inoltre il seguente teorema dimostrato in classe:

Teorema 2 Siano k un campo, T_1, \ldots, T_n indeterminate distinte e siano s_1, \ldots, s_n le funzioni simmetriche elementari in T_1, \ldots, T_n . Poniamo $L = k(T_1, \ldots, T_n)$ e $F = k(s_1, \ldots, s_n)$. L'estensione L/F è di Galois e il suo gruppo di Galois è isomorfo a S_n .

Osservazione. Le funzioni simmetriche elementari s_1, \ldots, s_n nelle indeterminate T_1, \ldots, T_n sono algebricamente indipendenti.

Da questi due teoremi possiamo dedurre il seguente

Corollario 3 Per ogni $n \geq 2$ il gruppo simmetrico S_n si realizza come gruppo di Galois su \mathbb{Q} .

Dim. Applichiamo il Teorema 2 con $k=\mathbb{Q}$; si ha $\operatorname{Gal}(L/F)\cong S_n$. Osserviamo che l'estensione L/F è finita e separabile, quindi, per il teorema dell'elemento primitivo, è semplice, cioè esiste un elemento $\alpha=\alpha(T_1,\ldots,T_n)$ tale che $L=F(\alpha)$; dalla dimostrazione del teorema dell'elemento primitivo si ha anche che $\alpha=\alpha(T_1,\ldots,T_n)$ può essere scelto in $\mathbb{Q}[T_1,\ldots,T_n]$. Sia f il polinomio minimo di $\alpha(T_1,\ldots,T_n)$ su F[X], allora $f=f(s_1,\ldots,s_n,X)\in\mathbb{Q}[s_1,\ldots,s_n,X]$

$$f(s_1,\ldots,s_n,X) = \prod_{\sigma \in S_n} (X - \alpha(T_{\sigma(1)},\ldots,T_{\sigma(n)}))$$

in $\mathbb{Q}[T_1,\ldots T_n,X]$.

Poiché s_1, \ldots, s_n sono algebricamente indipendenti, il teorema di irriducibilità di Hilbert garantisce che esistono $a_1, \ldots, a_n \in \mathbb{Q}$ tali che il polinomio $\bar{f}(X) = f(a_1, \ldots, a_n, X)$ rimane irriducibile in $\mathbb{Q}[X]$. Sia $\bar{\alpha}$ una sua radice, mostriamo che $\mathbb{Q}(\bar{\alpha})/\mathbb{Q}$ è un'estensione di Galois con gruppo di Galois S_n .

Sicuramente $[\mathbb{Q}(\bar{\alpha}):\mathbb{Q}] = \deg(\bar{f}) = n!$. Inoltre, dette τ_1,\ldots,τ_n le radici in $\bar{\mathbb{Q}}$ del polinomio $p(X) = X^n - a_1 X^{n-1} + \cdots + (-1)^n a_n$, si ha che l'insieme delle radici di $\bar{f}(x) = f(a_1,\ldots,a_n,X)$ è $\{\alpha(\tau_{\sigma(1)},\ldots,\tau_{\sigma(n)})\}_{\sigma\in S_n}$. Ne segue che $\mathbb{Q}(\bar{\alpha})\subseteq\mathbb{Q}(\tau_1,\ldots,\tau_n)$.

Ora $\mathbb{Q}(\tau_1,\ldots,\tau_n)$ è il campo di spezzamento del polinomio p(X) su \mathbb{Q} ; poiché p(x) ha grado n, $\mathrm{Gal}(\mathbb{Q}(\tau_1,\ldots,\tau_n)/\mathbb{Q})$ è isomorfo ad un sottogruppo di S_n . Confrontando i gradi delle estensioni otteniamo che $\mathbb{Q}(\bar{\alpha}) = \mathbb{Q}(\tau_1,\ldots,\tau_n)$ e ne deduciamo che il suo gruppo di Galois è isomorfo ad S_n .

Osservazione. Nel Corollario precedente potevamo scegliere $\alpha(T_1,\ldots,T_n)=T_1+2T_2+\cdots+nT_n$. Infatti l'orbita di $T_1+2T_2+\cdots+nT_n$ sotto l'azione del gruppo di Galois S_n è $\{T_{\sigma(1)}+2T_{\sigma(2)}+\cdots+nT_{\sigma(n)}\}_{\sigma\in S_n}$. Poichè questi elementi sono tutti distinti, $T_1+2T_2+\cdots+nT_n$ ha n! coniugati su F e quindi è un generatore dell'estensione L/F.